•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new variable selection approach using Random Forests

Author:
Hapfelmeier, A. - Ulm, K.
Publisher:
Elsevier Science
Year
: 2013
DOI: 10.1016/j.csda.2012.09.020
URI: http://libsearch.um.ac.ir:80/fum/handle/fum/578253
Keyword(s): Random Forests,Variable selection,Permutation tests,Multiple testing
Collections :
  • Latin Articles
  • Show Full MetaData Hide Full MetaData
  • Statistics

    A new variable selection approach using Random Forests

Show full item record

contributor authorHapfelmeier, A. - Ulm, K.
date accessioned2020-03-11T15:33:41Z
date available2020-03-11T15:33:41Z
date issued2013
identifier issn0167-9473
identifier other10.1016-j.csda.2012.09.020.pdf
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/578253
formatgeneral
languageEnglish
publisherElsevier Science
titleA new variable selection approach using Random Forests
typeJournal Paper
contenttypeMetadata Only
identifier padid4431405
subject keywordsRandom Forests
subject keywordsVariable selection
subject keywordsPermutation tests
subject keywordsMultiple testing
identifier doi10.1016/j.csda.2012.09.020
journal titleComputational Statistics and Data Analysis
journal volume60
journal issue0
filesize899849
citations0
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace