•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Confidence sets in sparse regression

Author:
Nickl, Richard - van de Geer, Sara
Publisher:
The Institute of Mathematical Statistics
Year
: 2013
DOI: 10.1214/13-AOS1170
URI: http://libsearch.um.ac.ir:80/fum/handle/fum/375398
Keyword(s): Composite testing problem,high,detection boundary,quadratic risk estimation
Collections :
  • Latin Articles
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Confidence sets in sparse regression

Show full item record

contributor authorNickl, Richard - van de Geer, Sara
date accessioned2020-03-11T01:45:15Z
date available2020-03-11T01:45:15Z
date issued2013
identifier issn0090-5364
identifier othereuclid.aos.1387313392.pdf
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/375398?locale-attribute=en
formatgeneral
languageEnglish
publisherThe Institute of Mathematical Statistics
titleConfidence sets in sparse regression
typeJournal Paper
contenttypeMetadata Only
identifier padid2414223
subject keywordsComposite testing problem
subject keywordshigh
subject keywordsdetection boundary
subject keywordsquadratic risk estimation
identifier doi10.1214/13-AOS1170
journal titleThe Annals of Statistics
journal volume41
journal issue6
filesize281634
citations0
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace