Show simple item record

contributor authorحامد نجفیen
contributor authorHamed Najafifa
date accessioned2020-06-06T14:25:46Z
date available2020-06-06T14:25:46Z
date copyright3/8/2017
date issued2017
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/3396274?locale-attribute=en&show=full
description abstract‎Let $C$ and $D$ be positive operators such that $C\\leq D$ and $D$ be invertible‎. ‎We show that there exists a trace preserving unital completely positive map $\\Phi_{C,D}:\\mathbb{B}(\\mathcal{H})\\rightarrow \\mathbb{B}(\\mathcal{H})$ such that ‎the ‎block ‎operator ‎matrices

‎\\begin{equation*}‎

‎\\left(‎

‎\\begin{array}{cc}‎

‎\\Phi_{C,D}(A) & C \\\\‎

‎C & \\Phi_{C,D}(B) \\\\‎

‎\\end{array}‎

‎\\right)‎

‎\\end{equation*}‎

are positive‎, ‎for all positive operators $A$ and $B$ such that $D=A\\sharp B$‎.
en
languageEnglish
titlePOSITIVE BLOCK MATRICESen
typeConference Paper
contenttypeExternal Fulltext
subject keywordsGeometric mean‎en
subject keywords‎Positive block matrix‎en
subject keywords‎Completely positive linear map‎en
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1063636.html
conference titleسومین سمینار نظریه عملگرها و کاربردهای آنfa
conference locationمشهدfa
identifier articleid1063636


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record