POSITIVE BLOCK MATRICES
Year
: 2017
Abstract: Let $C$ and $D$ be positive operators such that $C\\leq D$ and $D$ be invertible. We show that there exists a trace preserving unital completely positive map $\\Phi_{C,D}:\\mathbb{B}(\\mathcal{H})\\rightarrow \\mathbb{B}(\\mathcal{H})$ such that the block operator matrices
\\begin{equation*}
\\left(
\\begin{array}{cc}
\\Phi_{C,D}(A) & C \\\\
C & \\Phi_{C,D}(B) \\\\
\\end{array}
\\right)
\\end{equation*}
are positive, for all positive operators $A$ and $B$ such that $D=A\\sharp B$.
\\begin{equation*}
\\left(
\\begin{array}{cc}
\\Phi_{C,D}(A) & C \\\\
C & \\Phi_{C,D}(B) \\\\
\\end{array}
\\right)
\\end{equation*}
are positive, for all positive operators $A$ and $B$ such that $D=A\\sharp B$.
Keyword(s): Geometric mean,Positive block matrix,Completely positive linear map
Collections
:
-
Statistics
POSITIVE BLOCK MATRICES
Show full item record
contributor author | حامد نجفی | en |
contributor author | Hamed Najafi | fa |
date accessioned | 2020-06-06T14:25:46Z | |
date available | 2020-06-06T14:25:46Z | |
date copyright | 3/8/2017 | |
date issued | 2017 | |
identifier uri | http://libsearch.um.ac.ir:80/fum/handle/fum/3396274?locale-attribute=en | |
description abstract | Let $C$ and $D$ be positive operators such that $C\\leq D$ and $D$ be invertible. We show that there exists a trace preserving unital completely positive map $\\Phi_{C,D}:\\mathbb{B}(\\mathcal{H})\\rightarrow \\mathbb{B}(\\mathcal{H})$ such that the block operator matrices \\begin{equation*} \\left( \\begin{array}{cc} \\Phi_{C,D}(A) & C \\\\ C & \\Phi_{C,D}(B) \\\\ \\end{array} \\right) \\end{equation*} are positive, for all positive operators $A$ and $B$ such that $D=A\\sharp B$. | en |
language | English | |
title | POSITIVE BLOCK MATRICES | en |
type | Conference Paper | |
contenttype | External Fulltext | |
subject keywords | Geometric mean | en |
subject keywords | Positive block matrix | en |
subject keywords | Completely positive linear map | en |
identifier link | https://profdoc.um.ac.ir/paper-abstract-1063636.html | |
conference title | سومین سمینار نظریه عملگرها و کاربردهای آن | fa |
conference location | مشهد | fa |
identifier articleid | 1063636 |