•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transportation Application of Social Media: Travel Mode Extraction

نویسنده:
مجتبی مغربی
,
علیرضا عباسی
,
تراوویس والر
,
Mojtaba Maghrebi
سال
: 2016
چکیده: At the present time, social media is not only used for connecting people in a virtual environment, but is also considered as a reach source of information for organizations and public service agencies to facilitate their policy and decision making processes. As an example, such crowdsourced data can be considered as a complementary source for analyzing people choices. In this study, we attempt to show how social media data can be used (and utilized) in order to extract travel mode choice which can be used as complementary source of information to improve traditional costly methods such as House Travel Surveys (HTS). The contents of Twitter data posted in Melbourne metropolitan areas have been analyzed to determine travel mode choices information. The results show, walking and driving modes are the most frequent travel modes extracted from Twitter data while public mode of transportations such as bus and taxi are rarely detected. Future research is required to extend this approach by considering and validating socio-demographic metrics of social media users so as to utilize social media data as complementing source of information for HTS.
یو آر آی: http://libsearch.um.ac.ir:80/fum/handle/fum/3394393
کلیدواژه(گان): Twitter,Data mining,Urban areas,Public transportation,Legged locomotion
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    Transportation Application of Social Media: Travel Mode Extraction

Show full item record

contributor authorمجتبی مغربیen
contributor authorعلیرضا عباسیen
contributor authorتراوویس والرen
contributor authorMojtaba Maghrebifa
date accessioned2020-06-06T14:23:03Z
date available2020-06-06T14:23:03Z
date copyright11/1/2016
date issued2016
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/3394393
description abstractAt the present time, social media is not only used for connecting people in a virtual environment, but is also considered as a reach source of information for organizations and public service agencies to facilitate their policy and decision making processes. As an example, such crowdsourced data can be considered as a complementary source for analyzing people choices. In this study, we attempt to show how social media data can be used (and utilized) in order to extract travel mode choice which can be used as complementary source of information to improve traditional costly methods such as House Travel Surveys (HTS). The contents of Twitter data posted in Melbourne metropolitan areas have been analyzed to determine travel mode choices information. The results show, walking and driving modes are the most frequent travel modes extracted from Twitter data while public mode of transportations such as bus and taxi are rarely detected. Future research is required to extend this approach by considering and validating socio-demographic metrics of social media users so as to utilize social media data as complementing source of information for HTS.en
languageEnglish
titleTransportation Application of Social Media: Travel Mode Extractionen
typeConference Paper
contenttypeExternal Fulltext
subject keywordsTwitteren
subject keywordsData miningen
subject keywordsUrban areasen
subject keywordsPublic transportationen
subject keywordsLegged locomotionen
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1058835.html
conference titleIEEE- Intelligent Transportation Systemsen
conference locationRio De Janeirofa
identifier articleid1058835
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace