•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scheduling Data-Driven Workflows in Multi-cloud Environment

نویسنده:
نفیسه سویزی
,
سعید ابریشمی
,
Majid Lotfian
,
Nafise Soezy
,
Saeid Abrishami
سال
: 2015
چکیده: Nowadays, cloud computing and other distributed computing systems have been developed to support various

types of workflows in applications. Due to the restrictions in the use of one cloud provider, the concept of multiple clouds has been proposed. In multiple clouds, scheduling workflows with large amounts of data is a well-known NP-Hard problem. The existing scheduling algorithms have not paid attention to the data dependency issues and their importance in scheduling criteria such as time and cost. In this paper, we propose a communication based algorithm for workflows with huge volumes of data in a multi-cloud environment. The proposed algorithm changes the definition of the Partial Critical Paths (PCP) to minimize the cost of workflow execution while meeting a user defined deadline
یو آر آی: http://libsearch.um.ac.ir:80/fum/handle/fum/3393586
کلیدواژه(گان): Keywords-cloud computing,multi-cloud,workflow scheduling,data dependency,communication
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    Scheduling Data-Driven Workflows in Multi-cloud Environment

Show full item record

contributor authorنفیسه سویزیen
contributor authorسعید ابریشمیen
contributor authorMajid Lotfianen
contributor authorNafise Soezyfa
contributor authorSaeid Abrishamifa
date accessioned2020-06-06T14:21:55Z
date available2020-06-06T14:21:55Z
date copyright11/30/2015
date issued2015
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/3393586?locale-attribute=fa
description abstractNowadays, cloud computing and other distributed computing systems have been developed to support various

types of workflows in applications. Due to the restrictions in the use of one cloud provider, the concept of multiple clouds has been proposed. In multiple clouds, scheduling workflows with large amounts of data is a well-known NP-Hard problem. The existing scheduling algorithms have not paid attention to the data dependency issues and their importance in scheduling criteria such as time and cost. In this paper, we propose a communication based algorithm for workflows with huge volumes of data in a multi-cloud environment. The proposed algorithm changes the definition of the Partial Critical Paths (PCP) to minimize the cost of workflow execution while meeting a user defined deadline
en
languageEnglish
titleScheduling Data-Driven Workflows in Multi-cloud Environmenten
typeConference Paper
contenttypeExternal Fulltext
subject keywordsKeywords-cloud computingen
subject keywordsmulti-clouden
subject keywordsworkflow schedulingen
subject keywordsdata dependencyen
subject keywordscommunicationen
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1056705.html
conference title2015 IEEE 7th International Conference on Cloud Computing Technology and Science (CloudComen
conference locationونکوورfa
identifier articleid1056705
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace