•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

JB-algebras of rank zero

Author:
سمیه قربانی پور
,
شیرین حجازیان
,
somaye ghorbani poor
,
Shirin Hejazian
Year
: 2019
Abstract: A unital JB-algebra A is defined to be of rank zero if the set of invertible elements is dense in A. A non-unital JB-algebra A is said to be of rank zero if its unitization A ⊕R1 is so. We show that a unital JB-algebra A is of rank zero if and only if the set of elements with finite spectrum is dense in A if and only if every inner ideal of A admits an approximate identity (not necessarily increasing) consisting of projections. Moreover, we establish that zero rank is inherited by every closed ideal and every quotient algebra.
DOI: 10.1016/j.jmaa.2019.06.060
URI: http://libsearch.um.ac.ir:80/fum/handle/fum/3368114
Keyword(s): JB-algebra,Rank zero,Real rank zero,Inner ideal
Collections :
  • ProfDoc
  • Show Full MetaData Hide Full MetaData
  • Statistics

    JB-algebras of rank zero

Show full item record

contributor authorسمیه قربانی پورen
contributor authorشیرین حجازیانen
contributor authorsomaye ghorbani poorfa
contributor authorShirin Hejazianfa
date accessioned2020-06-06T13:45:53Z
date available2020-06-06T13:45:53Z
date issued2019
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/3368114
description abstractA unital JB-algebra A is defined to be of rank zero if the set of invertible elements is dense in A. A non-unital JB-algebra A is said to be of rank zero if its unitization A ⊕R1 is so. We show that a unital JB-algebra A is of rank zero if and only if the set of elements with finite spectrum is dense in A if and only if every inner ideal of A admits an approximate identity (not necessarily increasing) consisting of projections. Moreover, we establish that zero rank is inherited by every closed ideal and every quotient algebra.en
languageEnglish
titleJB-algebras of rank zeroen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsJB-algebraen
subject keywordsRank zeroen
subject keywordsReal rank zeroen
subject keywordsInner idealen
identifier doi10.1016/j.jmaa.2019.06.060
journal titleJournal of Mathematical Analysis and Applicationsfa
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1074869.html
identifier articleid1074869
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace