•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lin–Wong divergence and relations on type I censored data

نویسنده:
علیرضا پاک گوهر
,
آرزو حبیبی راد
,
ALIREZA PAKGOHAR
,
Arezou Habibirad
,
F. Yousefzadeh
سال
: 2019
چکیده: ‎Divergence measures are statistical tools designed to distinguish
between the information provided by distribution functions of f(x) and
g(x). The magnitude of divergence has been defined using a variety of
methods such as Shannon entropy and other mathematical functions
through a history of more than a century. In the present study, we have
briefly explained the Lin–Wong divergence measure and compared it to
other statistical information such as the Kullback-Leibler, Bhattacharyya
and v2 divergence as well as Shannon entropy and Fisher information on
Type I censored data. Besides, we obtain some inequalities for the
Lin–Wong distance and the mentioned divergences on the Type I censored scheme. Finally, we identified a number of ordering properties for
the Lin–Wong distance measure based on stochastic ordering, likelihood
ratio ordering and hazard rate ordering techniques.
شناسه الکترونیک: 10.1080/03610926.2018.1494839
یو آر آی: http://libsearch.um.ac.ir:80/fum/handle/fum/3364703
کلیدواژه(گان): Bhattacharyya,Chi square,Distance measure,Fisher Information,
Inequality
,
Kullback-Leibler,Lin-Wong,Stochastic Ordering
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    Lin–Wong divergence and relations on type I censored data

Show full item record

contributor authorعلیرضا پاک گوهرen
contributor authorآرزو حبیبی رادen
contributor authorALIREZA PAKGOHARfa
contributor authorArezou Habibiradfa
contributor authorF. Yousefzadehfa
date accessioned2020-06-06T13:40:43Z
date available2020-06-06T13:40:43Z
date issued2019
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/3364703
description abstract‎Divergence measures are statistical tools designed to distinguish
between the information provided by distribution functions of f(x) and
g(x). The magnitude of divergence has been defined using a variety of
methods such as Shannon entropy and other mathematical functions
through a history of more than a century. In the present study, we have
briefly explained the Lin–Wong divergence measure and compared it to
other statistical information such as the Kullback-Leibler, Bhattacharyya
and v2 divergence as well as Shannon entropy and Fisher information on
Type I censored data. Besides, we obtain some inequalities for the
Lin–Wong distance and the mentioned divergences on the Type I censored scheme. Finally, we identified a number of ordering properties for
the Lin–Wong distance measure based on stochastic ordering, likelihood
ratio ordering and hazard rate ordering techniques.
en
languageEnglish
titleLin–Wong divergence and relations on type I censored dataen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsBhattacharyyaen
subject keywordsChi squareen
subject keywordsDistance measureen
subject keywordsFisher Informationen
subject keywords
Inequality
en
subject keywordsKullback-Leibleren
subject keywordsLin-Wongen
subject keywordsStochastic Orderingen
identifier doi10.1080/03610926.2018.1494839
journal titleCommunications in Statistics - Theory and Methodsen
journal titleCommunications in Statistics - Theory and Methodsfa
pages4804-4819
journal volume48
journal issue19
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1069071.html
identifier articleid1069071
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace