•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Firefly optimization algorithm effecton support vector regression predictioni mprovement of amodified labyrinth side weir’s discharge coefficient

Author:
Amir Hossain Zaji
,
Hossain Bonakdari
,
سعیدرضا خداشناس
,
سعیدرضا خداشناس
,
سعیدرضا خداشناس
,
Shahaboddin Shamshirband
,
Saeed Reza Khodashenas
,
Saeed Reza Khodashenas
,
Saeed Reza Khodashenas
Year
: 2016
Abstract: A principal step in designing dividing hydraulic structures entails determining the side weir discharge coefficient. In this study, Firefly optimization-based Support Vector Regression (SVR-FF) is introduced and examined in terms of predicting the discharge coefficient of a modified labyrinth side weir. Ten non-dimensional parameters of various geometrical and hydraulic conditions are defined as the input parameters for the SVR-FF and the side weir discharge coefficient is defined as the output. Improvements in SVR prediction accuracy are determined by comparing SVR-FF with the traditional SVR model. The results indicate that the SVR-FF model with RMSE of 0.035 is about 10% more accurate than SVR with RMSE of 0.039. Thus, combining the Firefly optimization algorithm with SVR increases the prediction model performance.
URI: http://libsearch.um.ac.ir:80/fum/handle/fum/3356508
Keyword(s): Discharge coefficient,Firefly optimization,algorithm Modified,labyrinth side weir,Neural network Support vector regression
Collections :
  • ProfDoc
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Firefly optimization algorithm effecton support vector regression predictioni mprovement of amodified labyrinth side weir’s discharge coefficient

Show full item record

contributor authorAmir Hossain Zajien
contributor authorHossain Bonakdarien
contributor authorسعیدرضا خداشناسen
contributor authorسعیدرضا خداشناسen
contributor authorسعیدرضا خداشناسen
contributor authorShahaboddin Shamshirbanden
contributor authorSaeed Reza Khodashenasfa
contributor authorSaeed Reza Khodashenasfa
contributor authorSaeed Reza Khodashenasfa
date accessioned2020-06-06T13:28:42Z
date available2020-06-06T13:28:42Z
date issued2016
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/3356508?locale-attribute=en
description abstractA principal step in designing dividing hydraulic structures entails determining the side weir discharge coefficient. In this study, Firefly optimization-based Support Vector Regression (SVR-FF) is introduced and examined in terms of predicting the discharge coefficient of a modified labyrinth side weir. Ten non-dimensional parameters of various geometrical and hydraulic conditions are defined as the input parameters for the SVR-FF and the side weir discharge coefficient is defined as the output. Improvements in SVR prediction accuracy are determined by comparing SVR-FF with the traditional SVR model. The results indicate that the SVR-FF model with RMSE of 0.035 is about 10% more accurate than SVR with RMSE of 0.039. Thus, combining the Firefly optimization algorithm with SVR increases the prediction model performance.en
languageEnglish
titleFirefly optimization algorithm effecton support vector regression predictioni mprovement of amodified labyrinth side weir’s discharge coefficienten
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsDischarge coefficienten
subject keywordsFirefly optimizationen
subject keywordsalgorithm Modifieden
subject keywordslabyrinth side weiren
subject keywordsNeural network Support vector regressionen
journal titleApplied Mathematics and Computationen
journal titleApplied Mathematics and Computationfa
pages14-19
journal volume274
journal issue2
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1055403.html
identifier articleid1055403
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace