A Class Of Compact Operators On Homogeneous Spaces
نویسنده:
, , , ,سال
: 2014
چکیده: . Let ϖ be a representation of the homogeneous space G/H, where G be a locally compact group and H be a compact subgroup of G. For an admissible wavelet ζ for ϖ and ψ ∈ Lp (G/H), 1 ≤ p < ∞, we determine a class of bounded compact operators which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators
کلیدواژه(گان): Homogenous space,Square integrable representation,Admissible
wavelet,Localization operator
کالکشن
:
-
آمار بازدید
A Class Of Compact Operators On Homogeneous Spaces
Show full item record
contributor author | Fatemah Esmaeelzadeh | en |
contributor author | رجبعلی کامیابی گل | en |
contributor author | ریحانه رئیسی طوسی | en |
contributor author | Rajab Ali Kamyabi Gol | fa |
contributor author | Reihaneh Raisi Tousi | fa |
date accessioned | 2020-06-06T13:24:23Z | |
date available | 2020-06-06T13:24:23Z | |
date issued | 2014 | |
identifier uri | http://libsearch.um.ac.ir:80/fum/handle/fum/3353558?locale-attribute=fa | |
description abstract | . Let ϖ be a representation of the homogeneous space G/H, where G be a locally compact group and H be a compact subgroup of G. For an admissible wavelet ζ for ϖ and ψ ∈ Lp (G/H), 1 ≤ p < ∞, we determine a class of bounded compact operators which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators | en |
language | English | |
title | A Class Of Compact Operators On Homogeneous Spaces | en |
type | Journal Paper | |
contenttype | External Fulltext | |
subject keywords | Homogenous space | en |
subject keywords | Square integrable representation | en |
subject keywords | Admissible wavelet | en |
subject keywords | Localization operator | en |
journal title | Sahand Communications in Mathematical Analysis | fa |
pages | 39-46 | |
journal volume | 1 | |
journal issue | 2 | |
identifier link | https://profdoc.um.ac.ir/paper-abstract-1048245.html | |
identifier articleid | 1048245 |