•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fully automated diabetic retinopathy screening using morphologicalcomponent analysis

نویسنده:
سیده الهه ایمانی
,
حمیدرضا پوررضا
,
Touka Banaee
,
elaheh imani
,
Hamid Reza Pourreza
سال
: 2015
چکیده: tDiabetic retinopathy is the major cause of blindness in the world. It has been shown that early diagnosiscan play a major role in prevention of visual loss and blindness. This diagnosis can be made throughregular screening and timely treatment. Besides, automation of this process can significantly reduce thework of ophthalmologists and alleviate inter and intra observer variability. This paper provides a fullyautomated diabetic retinopathy screening system with the ability of retinal image quality assessment. Thenovelty of the proposed method lies in the use of Morphological Component Analysis (MCA) algorithmto discriminate between normal and pathological retinal structures. To this end, first a pre-screeningalgorithm is used to assess the quality of retinal images. If the quality of the image is not satisfactory, it isexamined by an ophthalmologist and must be recaptured if necessary. Otherwise, the image is processedfor diabetic retinopathy detection. In this stage, normal and pathological structures of the retinal imageare separated by MCA algorithm. Finally, the normal and abnormal retinal images are distinguished bystatistical features of the retinal lesions. Our proposed system achieved 92.01% sensitivity and 95.45%specificity on the Messidor dataset which is a remarkable result in comparison with previous work.
یو آر آی: http://libsearch.um.ac.ir:80/fum/handle/fum/3353071
کلیدواژه(گان): Diabetic retinopathy screeningRetinal image quality assessmentMorphological component analysis (MCA)algorithma
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    Fully automated diabetic retinopathy screening using morphologicalcomponent analysis

Show full item record

contributor authorسیده الهه ایمانیen
contributor authorحمیدرضا پوررضاen
contributor authorTouka Banaeeen
contributor authorelaheh imanifa
contributor authorHamid Reza Pourrezafa
date accessioned2020-06-06T13:23:39Z
date available2020-06-06T13:23:39Z
date issued2015
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/3353071
description abstracttDiabetic retinopathy is the major cause of blindness in the world. It has been shown that early diagnosiscan play a major role in prevention of visual loss and blindness. This diagnosis can be made throughregular screening and timely treatment. Besides, automation of this process can significantly reduce thework of ophthalmologists and alleviate inter and intra observer variability. This paper provides a fullyautomated diabetic retinopathy screening system with the ability of retinal image quality assessment. Thenovelty of the proposed method lies in the use of Morphological Component Analysis (MCA) algorithmto discriminate between normal and pathological retinal structures. To this end, first a pre-screeningalgorithm is used to assess the quality of retinal images. If the quality of the image is not satisfactory, it isexamined by an ophthalmologist and must be recaptured if necessary. Otherwise, the image is processedfor diabetic retinopathy detection. In this stage, normal and pathological structures of the retinal imageare separated by MCA algorithm. Finally, the normal and abnormal retinal images are distinguished bystatistical features of the retinal lesions. Our proposed system achieved 92.01% sensitivity and 95.45%specificity on the Messidor dataset which is a remarkable result in comparison with previous work.en
languageEnglish
titleFully automated diabetic retinopathy screening using morphologicalcomponent analysisen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsDiabetic retinopathy screeningRetinal image quality assessmentMorphological component analysis (MCA)algorithmaen
journal titleComputerized Medical Imaging and Graphicsfa
pages78-88
journal volume43
journal issue1
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1047448.html
identifier articleid1047448
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace