•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

IRAHC: Instance Reduction Algorithm using Hyperrectangle Clustering

نویسنده:
Javad Hamidzadeh
,
رضا منصفی
,
هادی صدوقی یزدی
,
Reza Monsefi
,
Hadi Sadoghi Yazdi
سال
: 2015
چکیده: In instance-based classifiers, there is a need for storing a large number of samples as training set. In this work, we propose an instance reduction method based on hyperrectangle clustering, called Instance Reduction Algorithm using Hyperrectangle Clustering (IRAHC). IRAHC removes non-border (interior) instances and keeps border and near border ones. This paper presents an instance reduction process based on hyperrectangle clustering. A hyperrectangle is an n-dimensional rectangle with axes aligned sides, which is defined by min and max points and a corresponding distance function. The min–max points are determined by using the hyperrectangle clustering algorithm. Instance-based learning algorithms are often confronted with the problem of deciding which instances must be stored to be used during an actual test. Storing too many instances can result in a large memory requirements and a slow execution speed. In IRAHC, core of instance reduction process is based on set of hyperrectangles. The performance has been evaluated on real world data sets from UCI repository by the 10-fold cross-validation method. The results of the experiments have been compared with state-of-the-art methods, which show superiority of the proposed method in terms of classification accuracy and reduction percentage.
یو آر آی: http://libsearch.um.ac.ir:80/fum/handle/fum/3352200
کلیدواژه(گان): Instance reduction,Instance selection,Hyperrectangle,Instance-based classifiers,k-Nearestneighbor(k-NN)
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    IRAHC: Instance Reduction Algorithm using Hyperrectangle Clustering

Show full item record

contributor authorJavad Hamidzadehen
contributor authorرضا منصفیen
contributor authorهادی صدوقی یزدیen
contributor authorReza Monsefifa
contributor authorHadi Sadoghi Yazdifa
date accessioned2020-06-06T13:22:22Z
date available2020-06-06T13:22:22Z
date issued2015
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/3352200?locale-attribute=fa
description abstractIn instance-based classifiers, there is a need for storing a large number of samples as training set. In this work, we propose an instance reduction method based on hyperrectangle clustering, called Instance Reduction Algorithm using Hyperrectangle Clustering (IRAHC). IRAHC removes non-border (interior) instances and keeps border and near border ones. This paper presents an instance reduction process based on hyperrectangle clustering. A hyperrectangle is an n-dimensional rectangle with axes aligned sides, which is defined by min and max points and a corresponding distance function. The min–max points are determined by using the hyperrectangle clustering algorithm. Instance-based learning algorithms are often confronted with the problem of deciding which instances must be stored to be used during an actual test. Storing too many instances can result in a large memory requirements and a slow execution speed. In IRAHC, core of instance reduction process is based on set of hyperrectangles. The performance has been evaluated on real world data sets from UCI repository by the 10-fold cross-validation method. The results of the experiments have been compared with state-of-the-art methods, which show superiority of the proposed method in terms of classification accuracy and reduction percentage.en
languageEnglish
titleIRAHC: Instance Reduction Algorithm using Hyperrectangle Clusteringen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsInstance reductionen
subject keywordsInstance selectionen
subject keywordsHyperrectangleen
subject keywordsInstance-based classifiersen
subject keywordsk-Nearestneighbor(k-NN)en
journal titlePattern Recognitionfa
pages1878-1889
journal volume48
journal issue5
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1045729.html
identifier articleid1045729
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace