•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Segmenting human knee cartilage automatically from multi-contrast MR images using support vector machines and discriminative random fields

Author:
Kunlei Zhang
,
Jun Deng
,
Wenmiao Lu
Year
: 2011
DOI: 10.1109/ICIP.2011.6116655
URI: http://libsearch.um.ac.ir:80/fum/handle/fum/193629
Collections :
  • Latin Articles
  • Download: (394.5Kb)
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Segmenting human knee cartilage automatically from multi-contrast MR images using support vector machines and discriminative random fields

Show full item record

contributor authorKunlei Zhang
contributor authorJun Deng
contributor authorWenmiao Lu
date accessioned2020-03-10T14:56:24Z
date available2020-03-10T14:56:24Z
date issued2011
identifier otherOXRiNqLHctJ9I0IhMm4r2SxJOxLLg4ix5MAbyGvB51jKrz8lo1.pdf
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/193629
formatgeneral
languageEnglish
titleSegmenting human knee cartilage automatically from multi-contrast MR images using support vector machines and discriminative random fields
typeJournal Paper
contenttypeFulltext
contenttypeFulltext
identifier padid1231875
identifier doi10.1109/ICIP.2011.6116655
coverageAcademic
pages721-724
filesize403803
citations2
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace