•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Online Learning as Stochastic Approximation of Regularization Paths: Optimality and Almost-Sure Convergence

Author:
Tarres, Pierre
,
Yuan Yao
Publisher:
IEEE
Year
: 2014
DOI: 10.1109/TIT.2014.2332531
URI: http://libsearch.um.ac.ir:80/fum/handle/fum/1137256
Keyword(s): Hilbert spaces,approximation theory,learning (artificial intelligence),minimax techniques,regression analysis,stochastic processes,Bernstein-type inequalities,RKHS,almost sure convergence,batch learning setting,mean square distance,minimax,online learning algorithm,optimality convergence,regression function,regularization paths,reproducing kernel Hilbert spaces,stochastic approximation,Approximation methods,Convergence,Educational institutions,Hilbert space,Kernel,Probabil
Collections :
  • Latin Articles
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Online Learning as Stochastic Approximation of Regularization Paths: Optimality and Almost-Sure Convergence

Show full item record

contributor authorTarres, Pierre
contributor authorYuan Yao
date accessioned2020-03-13T00:10:46Z
date available2020-03-13T00:10:46Z
date issued2014
identifier issn0018-9448
identifier other6842642.pdf
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/1137256
formatgeneral
languageEnglish
publisherIEEE
titleOnline Learning as Stochastic Approximation of Regularization Paths: Optimality and Almost-Sure Convergence
typeJournal Paper
contenttypeMetadata Only
identifier padid8319114
subject keywordsHilbert spaces
subject keywordsapproximation theory
subject keywordslearning (artificial intelligence)
subject keywordsminimax techniques
subject keywordsregression analysis
subject keywordsstochastic processes
subject keywordsBernstein-type inequalities
subject keywordsRKHS
subject keywordsalmost sure convergence
subject keywordsbatch learning setting
subject keywordsmean square distance
subject keywordsminimax
subject keywordsonline learning algorithm
subject keywordsoptimality convergence
subject keywordsregression function
subject keywordsregularization paths
subject keywordsreproducing kernel Hilbert spaces
subject keywordsstochastic approximation
subject keywordsApproximation methods
subject keywordsConvergence
subject keywordsEducational institutions
subject keywordsHilbert space
subject keywordsKernel
subject keywordsProbabil
identifier doi10.1109/TIT.2014.2332531
journal titleInformation Theory, IEEE Transactions on
journal volume60
journal issue9
filesize403231
citations0
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace