•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analytics-as-a-Service (AaaS) Tool for Unstructured Data Mining

Author:
Lomotey, R.K. , Deters, R.
Publisher:
IEEE
Year
: 2014
DOI: 10.1109/WSC.2014.7020221
URI: http://libsearch.um.ac.ir:80/fum/handle/fum/1119561
Keyword(s): Monte Carlo methods,sampling methods,stochastic processes,adaptive sampling rules,deterministic recursion,fully sequential Monte Carlo sampling method,noise-corrupted observations,stochastic recursions,stochastic simulation,unknown function,Adaptation models,Algorithm design and analysis,Approximation methods,Context,Context modeling,Random variables
Collections :
  • Latin Articles
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Analytics-as-a-Service (AaaS) Tool for Unstructured Data Mining

Show full item record

contributor authorLomotey, R.K. , Deters, R.
date accessioned2020-03-12T23:39:25Z
date available2020-03-12T23:39:25Z
date issued2014
identifier other6903489.pdf
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/1119561
formatgeneral
languageEnglish
publisherIEEE
titleAnalytics-as-a-Service (AaaS) Tool for Unstructured Data Mining
typeConference Paper
contenttypeMetadata Only
identifier padid8289595
subject keywordsMonte Carlo methods
subject keywordssampling methods
subject keywordsstochastic processes
subject keywordsadaptive sampling rules
subject keywordsdeterministic recursion
subject keywordsfully sequential Monte Carlo sampling method
subject keywordsnoise-corrupted observations
subject keywordsstochastic recursions
subject keywordsstochastic simulation
subject keywordsunknown function
subject keywordsAdaptation models
subject keywordsAlgorithm design and analysis
subject keywordsApproximation methods
subject keywordsContext
subject keywordsContext modeling
subject keywordsRandom variables
identifier doi10.1109/WSC.2014.7020221
journal titleloud Engineering (IC2E), 2014 IEEE International Conference on
filesize312840
citations0
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace