•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Suitable is the best: Least absolute deviation algorithm under high-mobility non-Gaussian noise environments

Author:
Gui, Guan
,
Li Xu
,
Adachi, Fumiyuki
Publisher:
IEEE
Year
: 2014
DOI: 10.1109/IPDPS.2014.59
URI: http://libsearch.um.ac.ir:80/fum/handle/fum/1077078
Keyword(s): learning (artificial intelligence),n program compilers,n software libraries,n sorting,n Nitro,n adaptive code variant tuning framework,n autotuning systems,n graph computations,n irregular GPU benchmarks,n library interface,n machine learning,n meta-information,n optimization criteria,n overhead reduction,n programmer-directed autotuning framework,n search space navigation,n sorting,n sparse numerical methods,n training time reduction,n Li
Collections :
  • Latin Articles
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Suitable is the best: Least absolute deviation algorithm under high-mobility non-Gaussian noise environments

Show full item record

contributor authorGui, Guan
contributor authorLi Xu
contributor authorAdachi, Fumiyuki
date accessioned2020-03-12T22:16:07Z
date available2020-03-12T22:16:07Z
date issued2014
identifier other7000208.pdf
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/1077078?locale-attribute=en
formatgeneral
languageEnglish
publisherIEEE
titleSuitable is the best: Least absolute deviation algorithm under high-mobility non-Gaussian noise environments
typeConference Paper
contenttypeMetadata Only
identifier padid8213316
subject keywordslearning (artificial intelligence)
subject keywordsn program compilers
subject keywordsn software libraries
subject keywordsn sorting
subject keywordsn Nitro
subject keywordsn adaptive code variant tuning framework
subject keywordsn autotuning systems
subject keywordsn graph computations
subject keywordsn irregular GPU benchmarks
subject keywordsn library interface
subject keywordsn machine learning
subject keywordsn meta-information
subject keywordsn optimization criteria
subject keywordsn overhead reduction
subject keywordsn programmer-directed autotuning framework
subject keywordsn search space navigation
subject keywordsn sorting
subject keywordsn sparse numerical methods
subject keywordsn training time reduction
subject keywordsn Li
identifier doi10.1109/IPDPS.2014.59
journal titleigh Mobility Wireless Communications (HMWC), 2014 International Workshop on
filesize916454
citations0
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace