•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

The prediction method of soil moisture content based on multiple regression and RBF neural network

نویسنده:
Qiao, Xu
,
Yang, Feng
,
Xu, Xianlei
ناشر:
IEEE
سال
: 2014
شناسه الکترونیک: 10.1109/REPCon.2014.6842204
یو آر آی: http://libsearch.um.ac.ir:80/fum/handle/fum/1068163
کلیدواژه(گان): data recording,n intelligent sensors,n power capacitors,n power grids,n scheduling,n vegetation,n CAIDI metrics,n O&,amp,M expenditure,n O&,amp,M scheduling,n SAIDI metrics,n business practices,n business process,n capacitor bank,n data recorders,n electrical grid,n fault indicators,n line patrolling,n smart sensors,n system planning,n targeted vegetation management,n utility operation,n Harmonic analysis,n Monitoring,n P
کالکشن :
  • Latin Articles
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    The prediction method of soil moisture content based on multiple regression and RBF neural network

Show full item record

contributor authorQiao, Xu
contributor authorYang, Feng
contributor authorXu, Xianlei
date accessioned2020-03-12T22:00:26Z
date available2020-03-12T22:00:26Z
date issued2014
identifier other6970402.pdf
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/1068163?locale-attribute=fa
formatgeneral
languageEnglish
publisherIEEE
titleThe prediction method of soil moisture content based on multiple regression and RBF neural network
typeConference Paper
contenttypeMetadata Only
identifier padid8203151
subject keywordsdata recording
subject keywordsn intelligent sensors
subject keywordsn power capacitors
subject keywordsn power grids
subject keywordsn scheduling
subject keywordsn vegetation
subject keywordsn CAIDI metrics
subject keywordsn O&
subject keywordsamp
subject keywordsM expenditure
subject keywordsn O&
subject keywordsamp
subject keywordsM scheduling
subject keywordsn SAIDI metrics
subject keywordsn business practices
subject keywordsn business process
subject keywordsn capacitor bank
subject keywordsn data recorders
subject keywordsn electrical grid
subject keywordsn fault indicators
subject keywordsn line patrolling
subject keywordsn smart sensors
subject keywordsn system planning
subject keywordsn targeted vegetation management
subject keywordsn utility operation
subject keywordsn Harmonic analysis
subject keywordsn Monitoring
subject keywordsn P
identifier doi10.1109/REPCon.2014.6842204
journal titleround Penetrating Radar (GPR), 2014 15th International Conference on
filesize746728
citations0
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace