Efficient Body of Revolution Method of Moments for rotationally symmetric antenna systems with offset illumination
نویسنده:
ناشر:
سال
: 2014شناسه الکترونیک: 10.1109/IGARSS.2014.6947409
کلیدواژه(گان): geophysical image processing,image classification,vegetation mapping,China,Southeast Beijing City,adaptive threshold,agricultural landscapes,hard classification,soft classification,vegetation distributions,vegetation mapping,Accuracy,Adaptation models,Biological system modeling,Materials,Remote sensing,Support vector machines,Vegetation mapping,Hard classification,adaptive threshold,linear spectral mixture models,soft classification,support vector machines
کالکشن
:
-
آمار بازدید
Efficient Body of Revolution Method of Moments for rotationally symmetric antenna systems with offset illumination
Show full item record
contributor author | Meincke, P. , Jorgensen, E. | |
date accessioned | 2020-03-12T20:46:03Z | |
date available | 2020-03-12T20:46:03Z | |
date issued | 2014 | |
identifier other | 6905059.pdf | |
identifier uri | http://libsearch.um.ac.ir:80/fum/handle/fum/1024717 | |
format | general | |
language | English | |
publisher | IEEE | |
title | Efficient Body of Revolution Method of Moments for rotationally symmetric antenna systems with offset illumination | |
type | Conference Paper | |
contenttype | Metadata Only | |
identifier padid | 8149687 | |
subject keywords | geophysical image processing | |
subject keywords | image classification | |
subject keywords | vegetation mapping | |
subject keywords | China | |
subject keywords | Southeast Beijing City | |
subject keywords | adaptive threshold | |
subject keywords | agricultural landscapes | |
subject keywords | hard classification | |
subject keywords | soft classification | |
subject keywords | vegetation distributions | |
subject keywords | vegetation mapping | |
subject keywords | Accuracy | |
subject keywords | Adaptation models | |
subject keywords | Biological system modeling | |
subject keywords | Materials | |
subject keywords | Remote sensing | |
subject keywords | Support vector machines | |
subject keywords | Vegetation mapping | |
subject keywords | Hard classification | |
subject keywords | adaptive threshold | |
subject keywords | linear spectral mixture models | |
subject keywords | soft classification | |
subject keywords | support vector machines | |
identifier doi | 10.1109/IGARSS.2014.6947409 | |
journal title | ntennas and Propagation Society International Symposium (APSURSI), 2014 IEEE | |
filesize | 214371 | |
citations | 0 |