Workload prediction for adaptive power scaling using deep learning
ناشر:
سال
: 2014شناسه الکترونیک: 10.1109/OCEANS.2014.7003300
کلیدواژه(گان): Fuels,Marine vehicles,Monitoring,Ports (Computers),Sea measurements,Sea state,Software
کالکشن
:
-
آمار بازدید
Workload prediction for adaptive power scaling using deep learning
Show full item record
contributor author | Tarsa, S.J. , Kumar, A.P. , Kung, H.T. | |
date accessioned | 2020-03-12T19:54:02Z | |
date available | 2020-03-12T19:54:02Z | |
date issued | 2014 | |
identifier other | 6838580.pdf | |
identifier uri | http://libsearch.um.ac.ir:80/fum/handle/fum/994396 | |
format | general | |
language | English | |
publisher | IEEE | |
title | Workload prediction for adaptive power scaling using deep learning | |
type | Conference Paper | |
contenttype | Metadata Only | |
identifier padid | 8113801 | |
subject keywords | Fuels | |
subject keywords | Marine vehicles | |
subject keywords | Monitoring | |
subject keywords | Ports (Computers) | |
subject keywords | Sea measurements | |
subject keywords | Sea state | |
subject keywords | Software | |
identifier doi | 10.1109/OCEANS.2014.7003300 | |
journal title | C Design & Technology (ICICDT), 2014 IEEE International Conference on | |
filesize | 944652 | |
citations | 0 |