How an Adaptive Learning Rate Benefits Neuro-Fuzzy Reinforcement Learning Systems
سال
: 2014شناسه الکترونیک: 10.1007/978-3-319-11857-4_37
کالکشن
:
-
آمار بازدید
How an Adaptive Learning Rate Benefits Neuro-Fuzzy Reinforcement Learning Systems
Show full item record
contributor author | Takashi Kuremoto | |
contributor author | Masanao Obayashi | |
contributor author | Kunikazu Kobayashi | |
contributor author | Shingo Mabu | |
date accessioned | 2020-03-12T14:47:18Z | |
date available | 2020-03-12T14:47:18Z | |
date issued | 2014 | |
identifier other | z2WqHnhyY0G2YDYxFgwkUfIbrKeZlPCPggk_vhjp_xQWsX3OrR.pdf | |
identifier uri | http://libsearch.um.ac.ir:80/fum/handle/fum/902983 | |
format | general | |
language | English | |
title | How an Adaptive Learning Rate Benefits Neuro-Fuzzy Reinforcement Learning Systems | |
type | Journal Paper | |
contenttype | Fulltext | |
contenttype | Fulltext | |
identifier padid | 7323424 | |
identifier doi | 10.1007/978-3-319-11857-4_37 | |
journal title | Lecture Notes in Computer Science | |
coverage | Academic | |
pages | 324-331 | |
filesize | 337283 | |
citations | 2 |