•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
View Item 
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  •   FUM Digital Library
  • Fum
  • Articles
  • Latin Articles
  • View Item
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mean square convergence analysis for kernel least mean square algorithm

Author:
Badong Chen
,
Songlin Zhao
,
Pingping Zhu
,
José C. Príncipe
Publisher:
Elsevier Science
Year
: 2012
DOI: 10.1016/j.sigpro.2012.04.007
URI: http://libsearch.um.ac.ir:80/fum/handle/fum/355108
Collections :
  • Latin Articles
  • Download: (499.8Kb)
  • Show Full MetaData Hide Full MetaData
  • Statistics

    Mean square convergence analysis for kernel least mean square algorithm

Show full item record

contributor authorBadong Chen
contributor authorSonglin Zhao
contributor authorPingping Zhu
contributor authorJosé C. Príncipe
date accessioned2020-03-11T01:00:09Z
date available2020-03-11T01:00:09Z
date issued2012
identifier otherYUYDRWIGhlQinTw1k6NzrnIqkpFbfzQKTbwxVG_TnvLkepv5x0.pdf
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/355108
formatgeneral
languageEnglish
publisherElsevier Science
titleMean square convergence analysis for kernel least mean square algorithm
typeJournal Paper
contenttypeFulltext
contenttypeFulltext
identifier padid2347113
identifier doi10.1016/j.sigpro.2012.04.007
journal titleSignal Processing
coverageAcademic
journal volume92
journal issue11
filesize511694
citations5
  • About Us
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace