Show simple item record

contributor authorکاظم خشیارمنشen
contributor authorKazem Khashyarmaneshfa
date accessioned2020-06-06T14:24:24Z
date available2020-06-06T14:24:24Z
date issued2010
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/3395329?locale-attribute=fa&show=full
description abstractLet (R,m) be a commutative Noetherian local ring with

non-zero identity, a a proper ideal of R and M a finitely

generated R-module with a M\\\\neq M. Let

D(-):=Hom_R(-,E) be the Matlis dual functor, where

E:=E(R/m) is the injective hull of the residue field R/m.

In this paper, by using a complex which involves modules of

generalized fractions, we show that, if x_1, ... ,x_n is a

regular sequence on

M contained in a, then H^n_(x_1, ... ,x_n)R

(D(H^n_a(M))) is a homomorphic image of D(M), where H^i_b(-) is

the i-th local cohomology functor with respect to an ideal

b of R. By applying this result, we study some conditions on

a certain module of generalized fractions under which

D(H^n_(x_1,... ,x_n)(D(H^n_a(M))))\\\\cong D(D(M)).
en
languageEnglish
titleOn the Matlis duals of local cohomology modules and modules of generalized fractionsen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordslocal cohomology moduleen
subject keywordsMatlis dual functoren
subject keywordsmodule of generalized fractionsen
subject keywordsfilter regular sequenceen
journal titleProceedings of the Indian Academy of Sciences - Mathematical Sciencesfa
pages35-43
journal volume120
journal issue1
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1015209.html
identifier articleid1015209


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record