•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Partial Mutual Information Based Algorithm For Input Variable Selection For time series forecasting

نویسنده:
علی درودی
,
شیده رضائی فر
,
محمدحسین جاویدی دشت بیاض
,
Ali Darudi
,
Shideh Rezaeifar
,
Mohammad Hossein Javidi Dasht Bayaz
سال
: 2013
چکیده: In time series forecasting, it is a crucial step to identify proper set of variables as the inputs to the model. Many input variable selection (IVS) techniques fail to perform suitably due to inherent assumption of linearity or rich redundancy between variables. The motivation behind this research is to propose an input variable selection algorithm which not only can handle nonlinear problems and redundant data, but also is straightforward and easy-to-implement. In the field of information theory, partial mutual information is a reliable measure to evaluate linear/nonlinear dependency and redundancy among variables. In this paper, we propose an IVS algorithm based on partial mutual information. The algorithm is tested on three time series with known dependence attributes. Results confirm credibility of the proposed method to capture linear/non-linear dependence and redundancy between variables.
یو آر آی: http://libsearch.um.ac.ir:80/fum/handle/fum/3389086
کلیدواژه(گان): input variable selection,partial mutual information,time series forecasting,information theory
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    Partial Mutual Information Based Algorithm For Input Variable Selection For time series forecasting

Show full item record

contributor authorعلی درودیen
contributor authorشیده رضائی فرen
contributor authorمحمدحسین جاویدی دشت بیاضen
contributor authorAli Darudifa
contributor authorShideh Rezaeifarfa
contributor authorMohammad Hossein Javidi Dasht Bayazfa
date accessioned2020-06-06T14:15:35Z
date available2020-06-06T14:15:35Z
date copyright11/1/2013
date issued2013
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/3389086
description abstractIn time series forecasting, it is a crucial step to identify proper set of variables as the inputs to the model. Many input variable selection (IVS) techniques fail to perform suitably due to inherent assumption of linearity or rich redundancy between variables. The motivation behind this research is to propose an input variable selection algorithm which not only can handle nonlinear problems and redundant data, but also is straightforward and easy-to-implement. In the field of information theory, partial mutual information is a reliable measure to evaluate linear/nonlinear dependency and redundancy among variables. In this paper, we propose an IVS algorithm based on partial mutual information. The algorithm is tested on three time series with known dependence attributes. Results confirm credibility of the proposed method to capture linear/non-linear dependence and redundancy between variables.en
languageEnglish
titlePartial Mutual Information Based Algorithm For Input Variable Selection For time series forecastingen
typeConference Paper
contenttypeExternal Fulltext
subject keywordsinput variable selectionen
subject keywordspartial mutual informationen
subject keywordstime series forecastingen
subject keywordsinformation theoryen
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1043457.html
conference title13th International Conference on Environment and Electrical Engineering (EEEIC), 2013en
conference locationWroclawfa
identifier articleid1043457
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace