•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unified Conditional Probability Density functions for hybrid Bayesian networks

نویسنده:
محدثه دلاوریان
,
محمود نقیب زاده
,
مهدی عمادی
,
Mohadeseh Delavarian
,
Mahmoud Naghibzadeh
سال
: 2012
چکیده: Bayesian Network is a significant graphical model that is used to do probabilistic inference and reasoning under

uncertainty circumstances. In many applications, existence of discrete and continuous variables in the model are inevitable which has lead to high amount of researches on hybrid Bayesian networks in the recent years. Nevertheless, one of the challenges in inference in hybrid BNs is the difference between conditional probability density functions of different types of variables. In this paper, we propose an approach to construct a Unified Conditional Probability Density function (UCPD) that can represent probability distribution for both types of variables. No limitation is considered in the topology of the network. Hence, the construction of the unified CPD is developed for all pairs of nodes. We take use from mixture of

Gaussians in the UCPD construct. Additionally, we utilize Kullback–Liebler divergence to measure the accuracy of our estimations.
یو آر آی: http://libsearch.um.ac.ir:80/fum/handle/fum/3383643
کلیدواژه(گان): hybrid bayesian network,mixture of Gaussians,unified conditional probability density function
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    Unified Conditional Probability Density functions for hybrid Bayesian networks

Show full item record

contributor authorمحدثه دلاوریانen
contributor authorمحمود نقیب زادهen
contributor authorمهدی عمادیen
contributor authorMohadeseh Delavarianfa
contributor authorMahmoud Naghibzadehfa
date accessioned2020-06-06T14:07:52Z
date available2020-06-06T14:07:52Z
date copyright8/14/2012
date issued2012
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/3383643
description abstractBayesian Network is a significant graphical model that is used to do probabilistic inference and reasoning under

uncertainty circumstances. In many applications, existence of discrete and continuous variables in the model are inevitable which has lead to high amount of researches on hybrid Bayesian networks in the recent years. Nevertheless, one of the challenges in inference in hybrid BNs is the difference between conditional probability density functions of different types of variables. In this paper, we propose an approach to construct a Unified Conditional Probability Density function (UCPD) that can represent probability distribution for both types of variables. No limitation is considered in the topology of the network. Hence, the construction of the unified CPD is developed for all pairs of nodes. We take use from mixture of

Gaussians in the UCPD construct. Additionally, we utilize Kullback–Liebler divergence to measure the accuracy of our estimations.
en
languageEnglish
titleUnified Conditional Probability Density functions for hybrid Bayesian networksen
typeConference Paper
contenttypeExternal Fulltext
subject keywordshybrid bayesian networken
subject keywordsmixture of Gaussiansen
subject keywordsunified conditional probability density functionen
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1030835.html
conference titleInternational Conference on Uncertainty Reasoning and Knowledge Engineeringen
conference locationجاکارتاfa
identifier articleid1030835
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace