•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Car tracking by quantised input LMS, QX-LMS algorithm in traffic scenes

نویسنده:
هادی صدوقی یزدی
,
Hadi Sadoghi Yazdi
سال
: 2006
چکیده: Abstract: The tracking algorithm is an important tool for motion analysis in computer vision. A

new car tracking algorithm is proposed which is based on a new clipping technique in the field

of adaptive filter algorithms. The uncertainty and occlusion of vehicles increase the noise in

vehicle tracking in a traffic scene, so the new clipping technique can control noise in prediction

of vehicle positions. The authors present a new quantised version of the LMS, namely the

QX-LMS algorithm, which has a better tracking capability in comparison with the clipped LMS

(CLMS) and the LMS and also involves less computation. The threshold parameter of the

QX-LMS algorithm causes controllability and the increase of tracking and convergence properties,

whereas the CLMS and LMS algorithms do not have these capabilities. The QX-LMS algorithm is

used for estimation of a noisy chirp signal, for system identification and in car tracking

applications. Simulation results for noisy chirp signal detection show that this algorithm yields a

considerable error reduction in comparison to the LMS and CLMS algorithms. The proposed

algorithm, in tracking some 77 vehicles in different traffic scenes, shows a reduction of the tracking

error relative to the LMS and CLMS algorithms.
یو آر آی: http://libsearch.um.ac.ir:80/fum/handle/fum/3374772
کلیدواژه(گان): tracking
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    Car tracking by quantised input LMS, QX-LMS algorithm in traffic scenes

Show full item record

contributor authorهادی صدوقی یزدیen
contributor authorHadi Sadoghi Yazdifa
date accessioned2020-06-06T13:55:12Z
date available2020-06-06T13:55:12Z
date issued2006
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/3374772?locale-attribute=fa
description abstractAbstract: The tracking algorithm is an important tool for motion analysis in computer vision. A

new car tracking algorithm is proposed which is based on a new clipping technique in the field

of adaptive filter algorithms. The uncertainty and occlusion of vehicles increase the noise in

vehicle tracking in a traffic scene, so the new clipping technique can control noise in prediction

of vehicle positions. The authors present a new quantised version of the LMS, namely the

QX-LMS algorithm, which has a better tracking capability in comparison with the clipped LMS

(CLMS) and the LMS and also involves less computation. The threshold parameter of the

QX-LMS algorithm causes controllability and the increase of tracking and convergence properties,

whereas the CLMS and LMS algorithms do not have these capabilities. The QX-LMS algorithm is

used for estimation of a noisy chirp signal, for system identification and in car tracking

applications. Simulation results for noisy chirp signal detection show that this algorithm yields a

considerable error reduction in comparison to the LMS and CLMS algorithms. The proposed

algorithm, in tracking some 77 vehicles in different traffic scenes, shows a reduction of the tracking

error relative to the LMS and CLMS algorithms.
en
languageEnglish
titleCar tracking by quantised input LMS, QX-LMS algorithm in traffic scenesen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordstrackingen
journal titleIEE Proceedings Vision, Image & Signal Processingfa
journal volume0
journal issue0
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1010159.html
identifier articleid1010159
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace