•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using quantile regression for fitting lactation curve in dairy cows

نویسنده:
حسین نعیمی پوریونسی
,
محمد مهدی شریعتی
,
سعید زره داران
,
مهدی جباری نوقابی
,
Peter Lovendahl
,
Hossein Naeemipour
,
Mohammad Mahdi Shariati
,
Saeed Zerehdaran
,
Mehdi Jabbari Nooghabi
,
Peter Lovendahl
سال
: 2019
چکیده: The main objective of this study was to compare the performance of different ‘nonlinear
quantile regression’ models evaluated at the τth quantile -0·25, 0·50, and 0·75- of milk production
traits and somatic cell score -SCS- in Iranian Holstein dairy cows. Data were collected by
the Animal Breeding Center of Iran from 1991 to 2011, comprising 101 051 monthly milk
production traits and SCS records of 13 977 cows in 183 herds. Incomplete gamma
-Wood-, exponential -Wilmink-, Dijkstra and polynomial -Ali & Schaeffer- functions were
implemented in the quantile regression. Residual mean square, Akaike information criterion
and log-likelihood from different models and quantiles indicated that in the same quantile,
the best models were Wilmink for milk yield, Dijkstra for fat percentage and Ali &
Schaeffer for protein percentage. Over all models the best model fit occurred at quantile
0·50 for milk yield, fat and protein percentage, whereas, for SCS the 0·25th quantile was
best. The best model to describe SCS was Dijkstra at quantiles 0·25 and 0·50, and Ali &
Schaeffer at quantile 0·75. Wood function had the worst performance amongst all traits.
Quantile regression is specifically appropriate for SCS which has a mixed multimodal
distribution.
شناسه الکترونیک: 10.1017/S0022029919000013
یو آر آی: http://libsearch.um.ac.ir:80/fum/handle/fum/3367081
کلیدواژه(گان): quantile regression
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    Using quantile regression for fitting lactation curve in dairy cows

Show full item record

contributor authorحسین نعیمی پوریونسیen
contributor authorمحمد مهدی شریعتیen
contributor authorسعید زره دارانen
contributor authorمهدی جباری نوقابیen
contributor authorPeter Lovendahlen
contributor authorHossein Naeemipourfa
contributor authorMohammad Mahdi Shariatifa
contributor authorSaeed Zerehdaranfa
contributor authorMehdi Jabbari Nooghabifa
contributor authorPeter Lovendahlfa
date accessioned2020-06-06T13:44:19Z
date available2020-06-06T13:44:19Z
date issued2019
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/3367081
description abstractThe main objective of this study was to compare the performance of different ‘nonlinear
quantile regression’ models evaluated at the τth quantile -0·25, 0·50, and 0·75- of milk production
traits and somatic cell score -SCS- in Iranian Holstein dairy cows. Data were collected by
the Animal Breeding Center of Iran from 1991 to 2011, comprising 101 051 monthly milk
production traits and SCS records of 13 977 cows in 183 herds. Incomplete gamma
-Wood-, exponential -Wilmink-, Dijkstra and polynomial -Ali & Schaeffer- functions were
implemented in the quantile regression. Residual mean square, Akaike information criterion
and log-likelihood from different models and quantiles indicated that in the same quantile,
the best models were Wilmink for milk yield, Dijkstra for fat percentage and Ali &
Schaeffer for protein percentage. Over all models the best model fit occurred at quantile
0·50 for milk yield, fat and protein percentage, whereas, for SCS the 0·25th quantile was
best. The best model to describe SCS was Dijkstra at quantiles 0·25 and 0·50, and Ali &
Schaeffer at quantile 0·75. Wood function had the worst performance amongst all traits.
Quantile regression is specifically appropriate for SCS which has a mixed multimodal
distribution.
en
languageEnglish
titleUsing quantile regression for fitting lactation curve in dairy cowsen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsquantile regressionen
identifier doi10.1017/S0022029919000013
journal titleJournal of Dairy Researchen
journal titleJournal of Dairy Researchfa
pages19-24
journal volume86
journal issue1
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1073130.html
identifier articleid1073130
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace