•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • ProfDoc
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust and stable gene selection via Maximum–Minimum Correntropy Criterion

نویسنده:
مجید محمدی
,
حسین شریفی نوقابی
,
قوشه عابدهدتنی
,
حبیب رجبی مشهدی
,
Majeed Mohammadi
,
Hossein Sharifi Noghabi
,
Ghosheh Abed Hodtani
,
Habib Rajabi Mashhadi
سال
: 2016
چکیده: One of the central challenges in cancer research is identifying significant genes among thousands of others on a microarray. Since preventing outbreak and progression of cancer is the ultimate goal in bioinformatics and computational biology, detection of genes that are most involved is vital and crucial. In this article, we propose a Maximum–Minimum Correntropy Criterion (MMCC) approach for selection of informative genes from microarray data sets which is stable, fast and robust against diverse noise and outliers and competitively accurate in comparison with other algorithms. Moreover, via an evolutionary optimization process, the optimal number of features for each data set is determined. Through broad experimental evaluation, MMCC is proved to be significantly better compared to other well-known gene selection algorithms for 25 commonly used microarray data sets. Surprisingly, high accuracy in classification by Support Vector Machine (SVM) is achieved by less than 10 genes selected by MMCC in all of the cases.
یو آر آی: http://libsearch.um.ac.ir:80/fum/handle/fum/3355851
کلیدواژه(گان): Microarray,Gene selection,Correntropy
کالکشن :
  • ProfDoc
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    Robust and stable gene selection via Maximum–Minimum Correntropy Criterion

Show full item record

contributor authorمجید محمدیen
contributor authorحسین شریفی نوقابیen
contributor authorقوشه عابدهدتنیen
contributor authorحبیب رجبی مشهدیen
contributor authorMajeed Mohammadifa
contributor authorHossein Sharifi Noghabifa
contributor authorGhosheh Abed Hodtanifa
contributor authorHabib Rajabi Mashhadifa
date accessioned2020-06-06T13:27:47Z
date available2020-06-06T13:27:47Z
date issued2016
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/3355851
description abstractOne of the central challenges in cancer research is identifying significant genes among thousands of others on a microarray. Since preventing outbreak and progression of cancer is the ultimate goal in bioinformatics and computational biology, detection of genes that are most involved is vital and crucial. In this article, we propose a Maximum–Minimum Correntropy Criterion (MMCC) approach for selection of informative genes from microarray data sets which is stable, fast and robust against diverse noise and outliers and competitively accurate in comparison with other algorithms. Moreover, via an evolutionary optimization process, the optimal number of features for each data set is determined. Through broad experimental evaluation, MMCC is proved to be significantly better compared to other well-known gene selection algorithms for 25 commonly used microarray data sets. Surprisingly, high accuracy in classification by Support Vector Machine (SVM) is achieved by less than 10 genes selected by MMCC in all of the cases.en
languageEnglish
titleRobust and stable gene selection via Maximum–Minimum Correntropy Criterionen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsMicroarrayen
subject keywordsGene selectionen
subject keywordsCorrentropyen
journal titleGenomicsfa
pages83-87
journal volume107
journal issue2
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1054066.html
identifier articleid1054066
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace