Show simple item record

contributor authorمحمد صال مصلحیانen
contributor authorJadranka Micicen
contributor authorMohsen Kianen
contributor authorMohammad Sal Moslehianfa
date accessioned2020-06-06T13:15:27Z
date available2020-06-06T13:15:27Z
date issued2013
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/3347875?show=full
description abstractWe present some generalized Jensen type operator inequalities

involving sequences of self-adjoint operators. Among other things,

we prove that if f:[0, infty) to mathbb{R} is a continuous

convex function with f(0) leq 0 , then

begin{equation*}

sum_{i=1}^{n} f(C_i) leq f left( sum_{i=1}^{n}C_i right)- delta_fsum_{i=1}^{n} widetilde{C}_i leq f left( sum_{i=1}^{n}C_i right)

end{equation*}

for all operators C_i such that 0 leq C_i leq M leq sum_{i=1}^{n} C_i (i=1, ldots,n) for some scalar

M geq0 , where widetilde{C_i} = frac{1}{2} - left|frac{C_i}{M}- frac{1}{2} right| and delta_f = f(0)+f(M) - 2 f left(

frac{M}{2} right).
en
languageEnglish
titleOperator inequalities of Jensen typeen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsconvex functionen
subject keywordspositive linear mapen
subject keywordsJensen--Mercer

operator inequality
en
subject keywordsPetrovi c operator inequalityen
journal titleTopological Algebra and its Applicationsfa
pages21-Sep
journal volume1
journal issue1
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-1037800.html
identifier articleid1037800


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record