Show simple item record

contributor authorاحمد عرفانیان مشیری نژادen
contributor authorرشيد رضاييen
contributor authorAhmad Erfanianfa
date accessioned2020-06-06T13:12:14Z
date available2020-06-06T13:12:14Z
date issued2007
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/3345738?show=full
description abstractThe aim of this paper is to give a lower bound for h(2,PSp (2m, q)),

for all 2 ≤ m ≤ 5 , m ≥ 10 and q ≥ 2, where h(2,G) is the maximum

number such that G

h(2,G) can be generated by 2 elements. Furthermore,

we consider a problem which was conjectured by J.Wiegold and the first

author in 1996, which says that h(2,G)2 > |G| for all finite non-abelian

simple groups. We confirm the conjecture for the projective symplectic

simple groups PSp (2m, q) at the end.
en
languageEnglish
titleOn the Growth Sequences of PSp_2m, qen
typeJournal Paper
contenttypeExternal Fulltext
subject keywordsMinimum number of generatorsen
subject keywordsmaximal subgroupsen
subject keywordssimple

groups
en
subject keywordsprojective symplectic linear groupsen
journal titleInternational Journal of Algebraen
journal titleInternational Journal of Algebrafa
pages51-62
journal volume1
journal issue2
identifier linkhttps://profdoc.um.ac.ir/paper-abstract-417.html
identifier articleid417


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record