Inflow Simulation and Forecasting Optimization Using Hybrid ANN-GA Algorithm
شبیه سازی و پیش بینی آبدهی با استفاده از الگوریتم ترکیبی ANN-GA
سال
: 1389
چکیده: چکیده rnبه منظور تعیین آبدهی رودخانه ها در آینده و برنامه ریزی جهت مصرف آب، از مدل هایی جهت پیش بینی این مقادیر استفاده می گردد. همچنین جهت تصحیح، تدقیق، تطویل، تکمیل و یا بازسازی داده ها، مدل های شبیه سازی مورد استفاده قرار می گیرند. از جمله مدل های تجربی مورد استفاده در این زمینه می توان به شبکه عصبی مصنوعی3 (ANN) اشاره نمود. در این تحقیق مؤثر بودن یا نبودن هر یک از عوامل دما، بارش، آبدهی و تأخیرهای زمانی این پارامترها در شبیه سازی و پیش بینی آبدهی رودخانه مورد بررسی قرار گرفته است. به منظور دستیابی آسانتر به این پارامترها و نیز تعیین ترکیب بهینه پارامتر های مؤثر در واسنجی ضرایب ANN از الگوریتم ژنتیک4 (GA) به عنوان یک ابزار بهینه سازی استفاده گردیده است. با انجام فرآیند فوق در دو مدل شبیه سازی و پیش بینی جریان، تعداد لایه های مخفی، تعداد نرون های مؤثر در هر یک از لایه ها، عوامل هواشناسی و هیدرولوژیکی مؤثر و نیز گام های زمانی مناسب هر یک از این عوامل در شبیه سازی و پیش بینی آبدهی با استفاده از GA به نحوی تعیین می گردد که بهترین حالت در مقادیر شبیه سازی و پیش بینی شده آبدهی حاصل شود. در این تحقیق که در حوضه آبریز رودخانه دز صورت گرفته است، تابع هدف کاهش مقدار میانگین مربعات خطای کل در نظر گرفته شد. مقادیر ضریب همبستگی بین آبدهی های محاسباتی و موجود برای دو مدل شبیه سازی و پیش بینی به ترتیب برابر با 86/0 و 79/0 به دست آمد که بیانگر کارآئی الگوریتم ANN-GA در شبیه سازی و پیش بینی آبدهی با دقت مطلوب می باشد. همچنین نتایج نشان دهنده برتری جواب های به دست آمده از مدل شبیه سازی نسبت به مدل پیش بینی می باشند. از دلایل این برتری می توان به وجود عوامل هواشناسی ماه مورد نظر در تعیین میزان آبدهی اشاره نمود. rnrnواژه های کلیدی: شبکه عصبی مصنوعی، شبیه سازی، پیش بینی، آبدهی، بهینه یابی، الگوریتم ژنتیک
شناسه الکترونیک: 10.22067/jsw.v0i0.5295
کالکشن
:
-
آمار بازدید
Inflow Simulation and Forecasting Optimization Using Hybrid ANN-GA Algorithm
Show full item record
contributor author | M. Zarezadeh-Mehrizi | |
contributor author | محبوبه زارع زاده مهریزی | Fa |
contributor author | O. Bozorg Haddad | |
contributor author | امید بزرگ حداد | |
date accessioned | 2020-06-05T11:37:07Z | |
date available | 2020-06-05T11:37:07Z | |
date copyright | 2010-12-20 14:37:05 | |
date issued | 1389 | |
identifier uri | http://libsearch.um.ac.ir:80/fum/handle/fum/3336537 | |
description abstract | چکیده rnبه منظور تعیین آبدهی رودخانه ها در آینده و برنامه ریزی جهت مصرف آب، از مدل هایی جهت پیش بینی این مقادیر استفاده می گردد. همچنین جهت تصحیح، تدقیق، تطویل، تکمیل و یا بازسازی داده ها، مدل های شبیه سازی مورد استفاده قرار می گیرند. از جمله مدل های تجربی مورد استفاده در این زمینه می توان به شبکه عصبی مصنوعی3 (ANN) اشاره نمود. در این تحقیق مؤثر بودن یا نبودن هر یک از عوامل دما، بارش، آبدهی و تأخیرهای زمانی این پارامترها در شبیه سازی و پیش بینی آبدهی رودخانه مورد بررسی قرار گرفته است. به منظور دستیابی آسانتر به این پارامترها و نیز تعیین ترکیب بهینه پارامتر های مؤثر در واسنجی ضرایب ANN از الگوریتم ژنتیک4 (GA) به عنوان یک ابزار بهینه سازی استفاده گردیده است. با انجام فرآیند فوق در دو مدل شبیه سازی و پیش بینی جریان، تعداد لایه های مخفی، تعداد نرون های مؤثر در هر یک از لایه ها، عوامل هواشناسی و هیدرولوژیکی مؤثر و نیز گام های زمانی مناسب هر یک از این عوامل در شبیه سازی و پیش بینی آبدهی با استفاده از GA به نحوی تعیین می گردد که بهترین حالت در مقادیر شبیه سازی و پیش بینی شده آبدهی حاصل شود. در این تحقیق که در حوضه آبریز رودخانه دز صورت گرفته است، تابع هدف کاهش مقدار میانگین مربعات خطای کل در نظر گرفته شد. مقادیر ضریب همبستگی بین آبدهی های محاسباتی و موجود برای دو مدل شبیه سازی و پیش بینی به ترتیب برابر با 86/0 و 79/0 به دست آمد که بیانگر کارآئی الگوریتم ANN-GA در شبیه سازی و پیش بینی آبدهی با دقت مطلوب می باشد. همچنین نتایج نشان دهنده برتری جواب های به دست آمده از مدل شبیه سازی نسبت به مدل پیش بینی می باشند. از دلایل این برتری می توان به وجود عوامل هواشناسی ماه مورد نظر در تعیین میزان آبدهی اشاره نمود. rnrnواژه های کلیدی: شبکه عصبی مصنوعی، شبیه سازی، پیش بینی، آبدهی، بهینه یابی، الگوریتم ژنتیک | Fa |
publisher | Ferdowsi University of Mashhad Press | |
publisher | انتشارات دانشگاه فردوسی مشهد | Fa |
title | Inflow Simulation and Forecasting Optimization Using Hybrid ANN-GA Algorithm | |
title | شبیه سازی و پیش بینی آبدهی با استفاده از الگوریتم ترکیبی ANN-GA | Fa |
contenttype | External Fulltext | |
identifier doi | 10.22067/jsw.v0i0.5295 | |
journal title | Journal of Water and Soil | |
journal title | آب و خاک | Fa |
journal volume | 24 | |
journal issue | 492 | |
identifier link | https://jsw.um.ac.ir/article/view/5295/); | |
identifier ojsid | 5295 |