•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
View Item 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • OJS Articles
  • View Item
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Fum
  • Articles
  • OJS Articles
  • View Item
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inflow Simulation and Forecasting Optimization Using Hybrid ANN-GA Algorithm

شبیه سازی و پیش بینی آبدهی با استفاده از الگوریتم ترکیبی ANN-GA

نویسنده:
M. Zarezadeh-Mehrizi
,
محبوبه زارع زاده مهریزی
,
O. Bozorg Haddad
,
امید بزرگ حداد
ناشر:
Ferdowsi University of Mashhad Press
سال
: 1389
چکیده: چکیده rnبه منظور تعیین آبدهی رودخانه ها در آینده و برنامه ریزی جهت مصرف آب، از مدل هایی جهت پیش بینی این مقادیر استفاده می گردد. همچنین جهت تصحیح، تدقیق، تطویل، تکمیل و یا بازسازی داده ها، مدل های شبیه سازی مورد استفاده قرار می گیرند. از جمله مدل های تجربی مورد استفاده در این زمینه می توان به شبکه عصبی مصنوعی3 (ANN) اشاره نمود. در این تحقیق مؤثر بودن یا نبودن هر یک از عوامل دما، بارش، آبدهی و تأخیرهای زمانی این پارامترها در شبیه سازی و پیش بینی آبدهی رودخانه مورد بررسی قرار گرفته است. به منظور دستیابی آسانتر به این پارامترها و نیز تعیین ترکیب بهینه پارامتر های مؤثر در واسنجی ضرایب ANN از الگوریتم ژنتیک4 (GA) به عنوان یک ابزار بهینه سازی استفاده گردیده است. با انجام فرآیند فوق در دو مدل شبیه سازی و پیش بینی جریان، تعداد لایه های مخفی، تعداد نرون های مؤثر در هر یک از لایه ها، عوامل هواشناسی و هیدرولوژیکی مؤثر و نیز گام های زمانی مناسب هر یک از این عوامل در شبیه سازی و پیش بینی آبدهی با استفاده از GA به نحوی تعیین می گردد که بهترین حالت در مقادیر شبیه سازی و پیش بینی شده آبدهی حاصل شود. در این تحقیق که در حوضه آبریز رودخانه دز صورت گرفته است، تابع هدف کاهش مقدار میانگین مربعات خطای کل در نظر گرفته شد. مقادیر ضریب همبستگی بین آبدهی های محاسباتی و موجود برای دو مدل شبیه سازی و پیش بینی به ترتیب برابر با 86/0 و 79/0 به دست آمد که بیانگر کارآئی الگوریتم ANN-GA در شبیه سازی و پیش بینی آبدهی با دقت مطلوب می باشد. همچنین نتایج نشان دهنده برتری جواب های به دست آمده از مدل شبیه سازی نسبت به مدل پیش بینی می باشند. از دلایل این برتری می توان به وجود عوامل هواشناسی ماه مورد نظر در تعیین میزان آبدهی اشاره نمود. rnrnواژه های کلیدی: شبکه عصبی مصنوعی، شبیه سازی، پیش بینی، آبدهی، بهینه یابی، الگوریتم ژنتیک
شناسه الکترونیک: 10.22067/jsw.v0i0.5295
یو آر آی: http://libsearch.um.ac.ir:80/fum/handle/fum/3336537
کالکشن :
  • OJS Articles
  • نمایش متادیتا پنهان کردن متادیتا
  • آمار بازدید

    Inflow Simulation and Forecasting Optimization Using Hybrid ANN-GA Algorithm

Show full item record

contributor authorM. Zarezadeh-Mehrizi
contributor authorمحبوبه زارع زاده مهریزیFa
contributor authorO. Bozorg Haddad
contributor authorامید بزرگ حداد
date accessioned2020-06-05T11:37:07Z
date available2020-06-05T11:37:07Z
date copyright2010-12-20 14:37:05
date issued1389
identifier urihttp://libsearch.um.ac.ir:80/fum/handle/fum/3336537
description abstractچکیده rnبه منظور تعیین آبدهی رودخانه ها در آینده و برنامه ریزی جهت مصرف آب، از مدل هایی جهت پیش بینی این مقادیر استفاده می گردد. همچنین جهت تصحیح، تدقیق، تطویل، تکمیل و یا بازسازی داده ها، مدل های شبیه سازی مورد استفاده قرار می گیرند. از جمله مدل های تجربی مورد استفاده در این زمینه می توان به شبکه عصبی مصنوعی3 (ANN) اشاره نمود. در این تحقیق مؤثر بودن یا نبودن هر یک از عوامل دما، بارش، آبدهی و تأخیرهای زمانی این پارامترها در شبیه سازی و پیش بینی آبدهی رودخانه مورد بررسی قرار گرفته است. به منظور دستیابی آسانتر به این پارامترها و نیز تعیین ترکیب بهینه پارامتر های مؤثر در واسنجی ضرایب ANN از الگوریتم ژنتیک4 (GA) به عنوان یک ابزار بهینه سازی استفاده گردیده است. با انجام فرآیند فوق در دو مدل شبیه سازی و پیش بینی جریان، تعداد لایه های مخفی، تعداد نرون های مؤثر در هر یک از لایه ها، عوامل هواشناسی و هیدرولوژیکی مؤثر و نیز گام های زمانی مناسب هر یک از این عوامل در شبیه سازی و پیش بینی آبدهی با استفاده از GA به نحوی تعیین می گردد که بهترین حالت در مقادیر شبیه سازی و پیش بینی شده آبدهی حاصل شود. در این تحقیق که در حوضه آبریز رودخانه دز صورت گرفته است، تابع هدف کاهش مقدار میانگین مربعات خطای کل در نظر گرفته شد. مقادیر ضریب همبستگی بین آبدهی های محاسباتی و موجود برای دو مدل شبیه سازی و پیش بینی به ترتیب برابر با 86/0 و 79/0 به دست آمد که بیانگر کارآئی الگوریتم ANN-GA در شبیه سازی و پیش بینی آبدهی با دقت مطلوب می باشد. همچنین نتایج نشان دهنده برتری جواب های به دست آمده از مدل شبیه سازی نسبت به مدل پیش بینی می باشند. از دلایل این برتری می توان به وجود عوامل هواشناسی ماه مورد نظر در تعیین میزان آبدهی اشاره نمود. rnrnواژه های کلیدی: شبکه عصبی مصنوعی، شبیه سازی، پیش بینی، آبدهی، بهینه یابی، الگوریتم ژنتیکFa
publisherFerdowsi University of Mashhad Press
publisherانتشارات دانشگاه فردوسی مشهدFa
titleInflow Simulation and Forecasting Optimization Using Hybrid ANN-GA Algorithm
titleشبیه سازی و پیش بینی آبدهی با استفاده از الگوریتم ترکیبی ANN-GAFa
contenttypeExternal Fulltext
identifier doi10.22067/jsw.v0i0.5295
journal titleJournal of Water and Soil
journal titleآب و خاکFa
journal volume24
journal issue492
identifier linkhttps://jsw.um.ac.ir/article/view/5295/);
identifier ojsid5295
  • درباره ما
نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
DSpace software copyright © 2019-2022  DuraSpace