•  English
    • Persian
    • English
  •   Login
  • Ferdowsi University of Mashhad
  • |
  • Information Center and Central Library
    • Persian
    • English
  • Home
  • Source Types
    • Journal Paper
    • Ebook
    • Conference Paper
    • Standard
    • Protocol
    • Thesis
  • Use Help
Search 
  •   FUM Digital Library
  • Search
  •   FUM Digital Library
  • Search
  • All Fields
  • Title
  • Author
  • Year
  • Publisher
  • Subject
  • Publication Title
  • ISSN
  • DOI
  • ISBN
Advanced Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-10 of 50

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    New Signal Processing Technique on Multiple Piezoelectric Sensor/Actuator for Structural Health Monitoring of Steel Structure Joints 

    Type: Conference Paper
    Author : علی اکبر اکبری; پیمان یزدان پناه مقدم; Ehsan Yazdanpanah Moghadam; Ali Akbar Akbari; Peyman Yazdanpanah Moghadam
    Year: 2010
    Abstract:

    In this paper a new signal processing technique on multiple piezoelectric sensor/actuator for structural health monitoring of steel structure joints is presented.This technique coupled the fast fourier transformer with wavelet MATLAB simulink...

    new application of random decerement technique 

    Type: Conference Paper
    Author : علیرضا انتظامی; هاشم شریعتمدار; Alireza Entezami; Hashem Shariatmadar
    Year: 2015
    Abstract:

    identification. Based on these data and mentioned procedures, it is possible to demonstrate the superior performance of random decrement technique in the statistical pro-cess control as an applicable and useful method for structural health monitoring. Results...

    An iterative order determination method for time-series modeling in structural health monitoring 

    Type: Journal Paper
    Author : محمد رضائی پژند; علیرضا انتظامی; هاشم شریعتمدار; Mohaamad Rezaiee Pajand; Alireza Entezami; Hashem Shariatmadar
    Year: 2017
    Abstract:

    Statistical time-series modeling has recently emerged as a promising and applicable methodology to structural health monitoring. In this methodology, an important step is to choose robust and optimal orders of time-series models for extracting...

    An unsupervised learning approach by novel damage indices in structural health monitoring for damage localization and quantification 

    Type: Journal Paper
    Author : علیرضا انتظامی; هاشم شریعتمدار; Alireza Entezami; Hashem Shariatmadar
    Year: 2018
    Abstract:

    Feature extraction by time-series analysis and decision making through distance-based methods are powerful and efficient statistical pattern recognition techniques for data-driven structural health monitoring. The motivation of this article...

    Data-driven damage diagnosis under environmental and operational variability by novel statistical pattern recognition methods 

    Type: Journal Paper
    Author : علیرضا انتظامی; هاشم شریعتمدار; عباس کرم الدین; Alireza Entezami; Hashem Shariatmadar; Abbas Karamodin
    Year: 2019
    Abstract:

    Feature extraction by time-series analysis and decision making through distance-based methods are powerful and efficient
    statistical pattern recognition techniques for data-driven structural health monitoring. The motivation of this article...

    A New Similarity Measure Method based on Statistical Pattern Recognition for Structural Health Monitoring 

    Type: Conference Paper
    Author : علیرضا انتظامی; هاشم شریعتمدار; Alireza Entezami; Hashem Shariatmadar
    Year: 2015
    Abstract:

    This study presents a new similarity measure method in order to detect and locate structural

    damage based on statistical pattern recognition paradigm. The similarity method is

    Bhattacharyya distance (BD) ...

    Application of Hopfield neural network to structural health monitoring 

    Type: Conference Paper
    Author : Omid Entezari Heravi; منصور قلعه نوی; علیرضا انتظامی; Mansour Ghalehnovi; Alireza Entezami
    Year: 2016
    Abstract:

    Structural health monitoring (SHM) using artificial neural networks has received increasing

    attention due to robustness of neural networks, better performance compared to conventional

    damage detection methods, and influential pattern...

    Efficient Multi-Channel Acoustic Echo Cancellation Using Constrained Sparse Filter Updates in the Subband Domain 

    Type: Conference Paper
    Author : Desiraju, Naveen Kumar; Doclo, Simon; Gerkmann, Timo; Wolff, Tobias
    Publisher: IEEE
    Year: 2014

    A novel anomaly detection method based on adaptive Mahalanobis-squared distance and one-class kNN rule for structural health monitoring under environmental effects 

    Type: Journal Paper
    Author : حسن سرمدی; عباس کرم الدین; Hassan Sarmadi; Abbas Karamodin
    Year: 2019
    Abstract:

    Anomaly detection by Mahalanobis-squared distance (MSD) is a popular unsupervised learning approach to structural health monitoring (SHM). Despite the popularity and high applicability of the MSD-based anomaly detection method, some major...

    Understanding data through collaboration: Developing collaboration support tools for expert artists and scientists 

    Type: Conference Paper
    Author : Keefe, D.F.
    Publisher: IEEE
    Year: 2014
    • 1
    • 2
    • 3
    • 4
    • . . .
    • 5

    Author

    ... View More

    Publisher

    Year

    Keywords

    ... View More

    Type

    Language (ISO)

    Content Type

    Publication Title

    ... View More
    • About Us
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    DSpace software copyright © 2019-2022  DuraSpace