•  Persian
    • Persian
    • English
  •   ورود
  • دانشگاه فردوسی مشهد
  • |
  • مرکز اطلاع‌رسانی و کتابخانه مرکزی
    • Persian
    • English
  • خانه
  • انواع منابع
    • مقاله مجله
    • کتاب الکترونیکی
    • مقاله همایش
    • استاندارد
    • پروتکل
    • پایان‌نامه
  • راهنمای استفاده
Search 
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Search
  •   کتابخانه دیجیتال دانشگاه فردوسی مشهد
  • Search
  • همه
  • عنوان
  • نویسنده
  • سال
  • ناشر
  • موضوع
  • عنوان ناشر
  • ISSN
  • شناسه الکترونیک
  • شابک
جستجوی پیشرفته
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

نمایش تعداد 1-10 از 20

    • Relevance
    • Title Asc
    • Title Desc
    • سال صعودی
    • سال نزولی
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • خروجی
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics 

    نوع: Journal Paper
    نویسنده : بهاره کیومرثی خمارتاش; Frank L. Lewis; حمید رضا مدرّس; علی کریم پور; محمدباقر نقیبی سیستانی; Bahareh Kiumarsi Khomartash; Hamidreza Modares; Ali Karimpour; Mohammad Bagher Naghibi Sistani
    سال: 2014
    خلاصه:

    In this paper, a novel approach based on the Q-learning algorithm is proposed to solve the infinite-horizon

    linear quadratic tracker (LQT) for unknown discrete-time systems in a causal manner. It is assumed

    that ...

    Optimal adaptive leader-follower consensus of linear multi-agent systems: Known and unknown dynamics 

    نوع: Journal Paper
    نویسنده : فرزانه تاتاری; محمدباقر نقیبی سیستانی; Farzaneh Tatari; Mohammad Bagher Naghibi Sistani
    سال: 2015
    خلاصه:

    of policy iteration and optimal adaptive control techniques to solve the leader follower consensus problem under known and unknown dynamics. Simulation results verify the effectiveness of the proposed methods....

    Optimal Tracking Control for Linear Discrete-time Systems Using Reinforcement Learning 

    نوع: Conference Paper
    نویسنده : بهاره کیومرثی خمارتاش; lLewis; محمدباقر نقیبی سیستانی; علی کریم پور; Bahareh Kiumarsi Khomartash; Mohammad Bagher Naghibi Sistani; Ali Karimpour
    سال: 2013
    خلاصه:



    optimal control solution are obtained simultaneously by solving

    the augmented ARE. To find the solution to the augmented

    ARE online, policy iteration as a class of reinforcement learning

    algorithms, is employed. This algorithm is implemented...

    Adaptive Optimal Control of Partially-unknown Constrained-input Systems using Policy Iteration with Experience Replay 

    نوع: Conference Paper
    نویسنده : حمید رضا مدرّس; محمدباقر نقیبی سیستانی; Frank L. Lewis; Girish Chowdhary; Tansel Yucelen; Hamidreza Modares; Mohammad Bagher Naghibi Sistani
    سال: 2013
    خلاصه:

    nonquadratic

    performance functional. An online policy iteration algorithm that uses integral

    reinforcement knowledge is developed to learn the solution to the optimal control problem

    online without knowing the full dynamics model...

    Policy Iteration Algorithm Based on Experience Replay to Solve H∞ Control Problem of Partially Unknown Nonlinear Systems 

    نوع: Conference Paper
    نویسنده : شعله یاسینی; محمدباقر نقیبی سیستانی; علی کریم پور; Sholeh Yasini; Mohammad Bagher Naghibi Sistani; Ali Karimpour
    سال: 2014
    خلاصه:

    In this paper, an online adaptive optimal control algorithm based on policy iteration (PI) is developed to solve the H∞ control problem of partially unknown nonlinear continuous-time (CT) systems. The convergence of existing PI algorithms...

    A policy iteration approach to online optimal control of continuous-time constrained-input systems 

    نوع: Journal Paper
    نویسنده : حمید رضا مدرّس; محمدباقر نقیبی سیستانی; Frank L. Lewis; Hamidreza Modares; Mohammad Bagher Naghibi Sistani
    سال: 2013
    خلاصه:

    This paper is an effort towards developing an online learning algorithm to find the optimal control

    solution for continuous-time (CT) systems subject to input constraints. The proposed method is based on

    the policy iteration (PI...

    Experience replay for least-squares policy iteration 

    نوع: Journal Paper
    نویسنده : Quan Liu; Xin Zhou; Fei Zhu; Qiming Fu; Yuchen Fu
    ناشر: IEEE
    سال: 2014

    Self-Learning Cruise Control Using Kernel-Based Least Squares Policy Iteration 

    نوع: Journal Paper
    نویسنده : Jian Wang; Xin Xu; Daxue Liu; Zhenping Sun; Qingyang Chen
    ناشر: IEEE
    سال: 2014

    First Passage Optimality for Continuous-Time Markov Decision Processes With Varying Discount Factors and History-Dependent Policies 

    نوع: Journal Paper
    نویسنده : Xianping Guo; Xinyuan Song; Yi Zhang
    ناشر: IEEE
    سال: 2014

    Policy Iteration Adaptive Dynamic Programming Algorithm for Discrete-Time Nonlinear Systems 

    نوع: Journal Paper
    نویسنده : Derong Liu; Qinglai Wei
    ناشر: IEEE
    سال: 2014
    • 1
    • 2

    نویسنده

    ... View More

    ناشر

    سال

    کلیدواژه

    ... View More

    نوع

    زبان

    نوع محتوا

    عنوان ناشر

    ... View More
    • درباره ما
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    DSpace software copyright © 2019-2022  DuraSpace